浙江大学薛晶晶研究员团队在Nature Communicationsa 期刊发表题为“Micro-homogeneity of lateral energy landscapes governs the performance in perovskite solar cells”的研究论文,团队成员石鹏举为论文第一作者,薛晶晶研究员为论文通讯作者。
核心亮点:采用一种有机脒盐类钝化剂,可以在微观水平上提供均匀的横向能量景观,大大提高PSCs和组件的性能。小面积器件(0.1 cm2)和太阳能组件(27.2 cm2)分别实现了25.5%和22.5%的冠军PCE(有效面积PCE为23.4%,经认证),且PSC在70°C下保持90%的效率约6000小时的较高稳定性。
为了减少非生产性电荷重组,从而实现高效的钙钛矿太阳能电池,在光伏器件的垂直方向上抑制能量紊乱(电荷载流子被迫沿着垂直方向移动)已经得到了广泛的研究。相比之下,在横向方向的能量紊乱的结大面积模块很大程度上被忽视。为解决这个问题,薛晶晶研究员团队采用两步法,分别用有机铵和脒类钝化剂对FAPbI3基钙钛矿薄膜(FAxCs1-xPbI3)进行表面处理,研究表明甲脒基钙钛矿薄膜表面横向能量学的微不均匀性特征也显著影响器件性能,特别是考虑到器件的稳定性和放大特性。通过使用有机脒盐类钝化剂,而不是最常用的有机铵类钝化剂,可以抑制横向能量景观中的微不均匀性,极大地提高了FA基单结钙钛矿太阳能电池的器件稳定性和效率。
小面积器件和太阳能组件(27.2 cm2)分别实现了25.5%和22.5%的冠军孔径PCE(认证活性面积PCE为23.4%)。PSC在70°C下保持90%的效率约6000小时,突出了横向能量景观的微均匀性对PSC性能的影响。
Fig. 1 | Micro-inhomogeneity of the lateral energy landscape in perovskite thin films. A Molecular structures of organic ammonium and amidinium passivators. B KPFM images of perovskite films treated with PAm, PAd, PPAm, and PPAd. C FTIR spectra of pure and PbI2-bound PAm, PAd, PPAm, and PPAd. D Crystal structures of PPAd- and PPAm-based low dimensional perovskite phases.
Fig. 2 | Lateral energetic inhomogeneity-induced charge carrier behaviors. A HTPL microscopic images of perovskite films treated with PPAm and PPAd. B Pixel-by-pixel statistical plots of the carrier lifetime extracted from the HTPL images for PPAm and PPAd. FWHM denotes the full-width half maximum (FWHM) of the lifetime distribution. C Line profiles of the carrier lifetime extracted from typical regions of the HTPL maps for PPAm and PPAd. D Surface-carrier kinetics pumped at 2.25, 2.07, 1.91, and 1.65 eV probed by TRS for perovskite films treated with PPAm and PPAd.
Fig. 3 | Film stability and degradation mechanisms. TRPL monitoring of perovskite films with A PPAm and B PPAd. C The evolution of average TRPL lifetime during the aging tests for perovskite films with PPAm and PPAd. D PL peak position maps via in situ PL mapping measurement for perovskite films during an accelerated aging test. E Line profiles of the PL peak position for PPAm and PPAd before and after aging. F Corresponding PL intensity maps for the perovskite films. G Line profiles of the PL intensity before and after aging.
Fig. 4 | Device performance of perovskite solar cells and modules. A J–V curves and B PCE statistics of perovskite solar cell devices fabricated using one-step method with PPAm, PPAd, and the control. C Certified device performance of the perovskite solar module of an aperture area of 27.2 cm2 fabricated with PPAd.D PCE statistics of perovskite solar modules fabricated with PPAm, PPAd, and the control. MPP tracking under continuous one-sun light soaking at ~70 °C of E perovskite solar cell and F perovskite solar modules.
本文来源:DOI: 10.1038/s41467-024-53953-4
https://doi.org/10.1038/s41467-024-53953-4